33,732 research outputs found

    Generalized enthalpy model of a high pressure shift freezing process

    Get PDF
    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature

    Hyperon effects on the properties of β\beta-stable neutron star matter

    Full text link
    We present results from Brueckner-Hartree-Fock calculations for β\beta-stable neutron star matter with nucleonic and hyperonic degrees of freedom employing the most recent parametrizations of the baryon-baryon interaction of the Nijmegen group. Only Σ\Sigma^- and Λ\Lambda are present up to densities 7ρ0\sim 7\rho_0. The corresponding equations of state are then used to compute properties of neutron stars such as masses and radii.Comment: 4 pages, contributed talk at HYP2000, Torino, 23-27 Oct. 200

    Chiral approach to antikaon s- and p-wave interactions in dense nuclear matter

    Get PDF
    The properties of the antikaons in nuclear matter are investigated from a chiral unitary approach which incorporates the s- and p-waves of the KˉN{\bar K}N interaction. To obtain the in-medium meson-baryon amplitudes we include, in a self-consistent way, Pauli blocking effects, meson self-energies corrected by nuclear short-range correlations and baryon binding potentials. We pay special attention to investigating the validity of the on-shell factorization, showing that it cannot be applied in the evaluation of the in-medium corrections to the p-wave amplitudes. In nuclear matter at saturation energy, the Λ\Lambda and Σ\Sigma develop an attractive potential of about -30 MeV, while the Σ\Sigma^* pole remains at the free space value although its width gets sensibly increased to about 80 MeV. The antikaon also develops a moderate attraction that does not support the existence of very deep and narrow bound states, confirming the findings of previous self-consistent calculations.Comment: 29 pages, 12 figures, published in Physical Review
    corecore